Branch Bank Efficiency
Past, Present and Future

EU-Workshop Series on
Mathematical Optimization Models for Financial Institutions
Bergamo, Italy May 2004

Prof. Boaz Golany
Faculty of Industrial Engineering and Management
The Technion – Israel Institute of Technology
Haifa, 32000 Israel
Golany@ie.technion.ac.il

5/31/2004
Outline

- Past
 - <1978: Profit measures, Operational efficiency
 - 1978-1998: Data Envelopment Analysis

- Present considerations
 - Too many factors (DEA-PCA)
 - Balancing strategic objectives (DEA-BSC)
 - Multi-stage systems

- Future
 - Drivers of change
 - Will branches disappear?
Pre-1978 Measures

- Industrial Engineering
- Accounting
- Economic
- Econometric
- Ad-hoc measures
Industrial Engineering Approach

- **Efficiency** = actual / standard

- **Problems**
 - How to aggregate
 - Expensive to construct
 - Difficult to maintain
 - Limited scope
 - Identical standards

Kotha, Barnum, Bowen, Interfaces 96
Accounting Approach

- Revenues, costs, profits w.r.t base year
- Problems
 - Internal comparison
 - Relevance of base year
 - Limited scope

Camanho and Dyson, JORS 99
Economic Approach

- Assume a certain production function, estimate its parameters, explain differences in performance through economic considerations

Problems

- Justifying the assumed production function
- How to update
- Everybody is efficient?

Evanoff and Israelevich, Federal Reserve Bank 92
Econometric Approach

- Fit a stochastic frontier using statistical tools, measure distance to
- Problems
 - Need for large data sets
 - Differentiating “noise” from inefficiency
 - Average vs. excellent performance

Ferrier and Lovell, J. of Econometrics, 90
Ad-hoc Approaches

- Share and compare
- SWOT maps
Outline

- Past
 - <1978: Profit measures, Operational efficiency
 - **1978-1998: Data Envelopment Analysis**

- Present considerations
 - Too many factors (DEA-PCA)
 - Balancing strategic objectives (DEA-BSC)
 - Multi-stage systems

- Future
 - Drivers of change
 - Will branches disappear?
Data Envelopment Analysis
- A Simple Description -

- DEA measures relative efficiency of decision-making units with multiple inputs and outputs but no obvious production function to aggregate data i.e. non-parametric

Charnes, Cooper & Rhodes, EJOR 1978
DEA Formulation

- Relative efficiency is defined as the ratio of total weighted output to total weighted input.
- By comparing \(n \) units with \(s \) outputs denoted by \(y_{ja}, j=1,...,s \) and \(r \) inputs denoted by \(x_{ia}, i=1,...,r \), the efficiency measure for DMU \(a \) is:

\[
Max_{w_j, v_i} e_a = \frac{\sum_{j=1}^{s} w_j y_{ja}}{\sum_{i=1}^{r} v_i x_{ia}}
\]

Decision variables:
- \(w_j \) output weights
- \(v_i \) input weights
A constraint requires that the same weights, when applied to all DMUs do not provide any unit with efficiency greater than one.

\[
\sum_{j=1}^{s} w_j y_{jm} \leq 1 \quad \text{for } m = 1, \ldots, n
\]

\[
\sum_{i=1}^{r} v_i x_{im}
\]
DEA Results

- Result of DEA is determination of hyperplanes defining an envelope surface or Pareto frontier
- DMUs lying on envelope are deemed efficient whilst remainder deemed inefficient
- DEA can be translated into a linear program, which can be solved relatively easily
- a complete DEA must solve n LPs, one for each DMU
Additive DEA Model

Primal Additive:

Max \(\lambda, s, \sigma \) \(e^t s + e^t \sigma \)

s.t. \(Y\lambda - s = Y^a \)

\(-X\lambda - \sigma = -X^a \)

\(\lambda, s, \sigma \geq 0 \)

Dual Additive:

Min \(v, u \) \(VX^a - UY^a \)

s.t. \(VX - UY \geq 0 \)

\(V \geq e \)

\(U \geq e \)

Charnes, Cooper, Golany, Seiford and Stutz, 1985
Some DEA Applications to Banking

- Parkan: **Canada** (ECPE 87)
- Athanassopoulos, Giokas: **Greece** (Interfaces 00)
- Sherman, Ladino: **USA** (Interfaces 95)
- Camanho, Dyson: **Portugal** (JOR 99)
- Golany, Storbeck: **USA** (Interfaces 99)
- Kantor, Maital: **Israel** (Interfaces 99)
- Soteriou, Zenios: **Cyprus** (Mg Sc 99)
- Chen: **Taiwan** (JOR 02)
- Paradi, Schaffnit: **Canada** (EJOR 04)
- Many more …
Outline

- **Past**
 - <1978: Profit measures, Operational efficiency
 - 1978-1998: Data Envelopment Analysis

- **Present considerations**
 - **Too many factors (DEA-PCA)**
 - Balancing strategic objectives (DEA-BSC)
 - Multi-stage systems

- **Future**
 - Drivers of change
 - Will branches disappear?
Too Many Factors

- In a typical evaluation of bank branches, DEA suffers from excess variables compared to decision-making units.
- Principle Component Analysis (PCA) can reduce the dimensions with minimal loss of information.

Adler and Golany, JORS 2002
Principal Component Analysis - A Simple Description -

- PCA explains variance structure of matrix of data through linear combinations of variables, thus reducing data to a few PCs, generally describing 80 to 90% of the variance in the data.
Let random vector $X = [X_1, X_2, ..., X_p]$ have correlation matrix C with eigenvalues $\beta_1 \geq \beta_2 \geq ... \geq \beta_p \geq 0$ and normalized eigenvectors $l_1, l_2, ..., l_p$.

$$X_{PC_i} = l_i^T X = l_{i1} X_1 + l_{i2} X_2 + ... + l_{ip} X_p$$

$$\text{Var}(X_{PC_i}) = l_i^T V l_i, \quad i=1,2, ..., p$$

$$\text{Cor}(X_{PC_i}, X_{PC_k}) = l_i^T V l_k, \quad i=1,2, ..., p, k=1,2, ..., p$$

PCs are the uncorrelated linear combinations ranked by their variances in descending order.
PCA-DEA Formulation

\[\text{Min } V_o X_o^a + V_{PC} X_{PC}^a - U_o Y_o^a - U_{PC} Y_{PC}^a \]

s.t. \[V_o X_o + V_{PC} X_{PC} - U_o Y_o - U_{PC} Y_{PC} \geq 0 \]
\[V_o \geq e \]
\[U_o \geq e \]
\[V_{PC} L_x \geq e \]
\[U_{PC} L_y \geq e \]
\[V_{PC}, U_{PC} \text{ free} \]

Data:

- \(X_0 \) original inputs and \(X_{PC} \) PC inputs
- \(Y_0 \) original outputs & \(Y_{PC} \) PC outputs

Decision variables:

- \(V_o \) & \(V_{PC} \) weights on inputs
- \(U_o \) & \(U_{PC} \) weights on inputs
3 PCA-DEA constrained models

- PCA-DEA partially constrained model
 \[V_{PCi} - V_{PCi+1} \geq 0 \]
 \[U_{PCi} - U_{PCi+1} \geq 0 \]

- Complete PCA-DEA constrained model
- Maximum discrimination in the PCA-DEA formulation
Complete PCA-DEA constrained model

\[\begin{align*}
\text{Min} & \quad VX^a - UY^a \\
\text{s.t.} & \quad VX - UY \geq 0 \\
& \quad V \geq e \\
& \quad U \geq e
\end{align*}\]

\[\begin{align*}
\text{Min} & \quad V_{PC} X_{PC}^a - U_{PC} Y_{PC}^a \\
\text{s.t.} & \quad V_{PC} X_{PC} - U_{PC} Y_{PC} \geq 0 \\
& \quad V_{PC} L_x \geq e \\
& \quad U_{PC} L_y \geq e \\
& \quad V_{PC_i} - V_{PC_{i+1}} \geq 0 \\
& \quad U_{PC_i} - U_{PC_{i+1}} \geq 0
\end{align*}\]
Maximum discrimination in the PCA-DEA constrained formulation

\[
\begin{align*}
\text{Max} & \quad \varepsilon_2 \\
\text{s.t.} & \quad V_{PC} X_{PC} - U_{PC} Y_{PC} \geq 0 \\
& \quad V_{PC} L_x \geq e \\
& \quad U_{PC} L_y \geq e \\
& \quad V_{PCI} - V_{PCI+1} \geq \varepsilon_2 \\
& \quad U_{PCI} - U_{PCI+1} \geq \varepsilon_2 \\
& \quad V_{PC_1} = 1
\end{align*}
\]
University Departments Example
Wong & Beasley (1990)

Compared 7 university departments over 6 variables:

Inputs:
- # of academic staff
- Academic staff salaries
- Support staff salaries

Outputs:
- # of undergraduate students
- # of postgraduate students
- # of research papers
PCA Illustration

Table: Outputs (L_y) and Inputs (L_x)

<table>
<thead>
<tr>
<th></th>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC1</td>
<td>0.017</td>
<td>0.049</td>
<td>-0.9986</td>
<td>0.796</td>
<td>-0.601</td>
<td>0.0679</td>
</tr>
<tr>
<td>PC2</td>
<td>0.974</td>
<td>0.225</td>
<td>-0.0277</td>
<td>0.488</td>
<td>0.704</td>
<td>-0.5157</td>
</tr>
<tr>
<td>PC3</td>
<td>0.226</td>
<td>-0.973</td>
<td>0.044</td>
<td>0.358</td>
<td>0.378</td>
<td>-0.8541</td>
</tr>
<tr>
<td>variance explained</td>
<td>98.145</td>
<td>1.854</td>
<td>0.0002</td>
<td>95.548</td>
<td>3.169</td>
<td>1.2819</td>
</tr>
</tbody>
</table>

5/31/2004
<table>
<thead>
<tr>
<th>DMU</th>
<th>additive original data</th>
<th>3 PCs on each side + constr</th>
<th>2 PCs on each side + constr</th>
<th>1 PC on each side</th>
<th>CCR (eff. = 1)</th>
<th>Subj. constr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.1254</td>
<td>0.2121</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.863</td>
<td>0.995</td>
<td>0.862</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2.024</td>
<td>1.0141</td>
<td>1.5803</td>
<td>0.691</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>202.5909</td>
<td>1.1506</td>
<td>0.4512</td>
<td>1.0834</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1.3016</td>
<td>2.3188</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>3.346</td>
<td>1.9975</td>
<td>3.6997</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Results of maximum discrimination model

Rank

<table>
<thead>
<tr>
<th>Rank</th>
<th>DMU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMU 6</td>
</tr>
<tr>
<td>2</td>
<td>DMU 2</td>
</tr>
<tr>
<td>3</td>
<td>DMU 1</td>
</tr>
<tr>
<td>4</td>
<td>DMU 3</td>
</tr>
<tr>
<td>5</td>
<td>DMU 5</td>
</tr>
<tr>
<td>6</td>
<td>DMU 7</td>
</tr>
<tr>
<td>7</td>
<td>DMU 4</td>
</tr>
</tbody>
</table>

Weights on original inputs

<table>
<thead>
<tr>
<th></th>
<th>weights on original inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>#of academic staff</td>
<td>1</td>
</tr>
<tr>
<td>academic salaries</td>
<td>1</td>
</tr>
<tr>
<td>support salaries</td>
<td>1.1807</td>
</tr>
</tbody>
</table>

Weights on original outputs

<table>
<thead>
<tr>
<th></th>
<th>weights on original outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>undergrads</td>
<td>1.0077</td>
</tr>
<tr>
<td>postgrads</td>
<td>1.0074</td>
</tr>
<tr>
<td>papers</td>
<td>1</td>
</tr>
</tbody>
</table>
DEA-PCA: Conclusions

- Combining PCA & DEA can improve discriminatory power of model
- Assurance regions and cone-ratio constraints require additional preferential information, PCA-DEA constrained formulation does not
- PCA-DEA constrained formula can improve discrimination with little to no loss of information, depending on model
Outline

- **Past**
 - <1978: Profit measures, Operational efficiency
 - 1978-1998: Data Envelopment Analysis

- **Present considerations**
 - Too many factors (DEA-PCA)
 - **Balancing strategic objectives (DEA-BSC)**
 - Multi-stage systems

- **Future**
 - On-line banking
 - Supply chain approach
The Balanced Score Card

• A set of measures that provide top management a fast and comprehensive view of the business – focus on strategy, not control.

• Balanced presentation of both financial measures (past performance) and operational measures (future performance)

• Minimize information overload by limiting the number of measures used

• focus on the most critical measures

The BSC Concept

How do the customer see us?

Financial Perspective

GOALS | MEASURES

How Do we Look to Stakeholders?

Customer Perspective

GOALS | MEASURES

How do the customer see us?

Internal Business Perspective

GOALS | MEASURES

What must we excel at?

Innovation and Learning Perspective

GOALS | MEASURES

Can we continue to improve and Create Value?
A BSC-DEA Model

\[\max_{u,v} S_0 = \left(\sum_r u_r y_{r0} \right) \left/ \left(\sum_i v_i x_{i0} \right) \right. \]

\[\left(\sum_r u_r y_{rj} \right) \left/ \left(\sum_i v_i x_{ij} \right) \right. \leq 1, \quad \forall j \]

\[L_{C_k} \leq \left(\sum_{i \in C_k} u_i y_{i0} \right) \left/ \left(\sum_{i \in C_0} u_i y_{i0} \right) \right. \leq U_{C_k}, \quad k = 1, \ldots, \bar{k} \]

\[u_r \geq \varepsilon, \quad r = 1, \ldots, s \]

\[v_i \geq \varepsilon, \quad i = 1, \ldots, m \]
• A node represents a card (or a group of measures)
• The single measures are the leaves of the graph
• Lower and upper bounds are attached to each node
An LP formulation of the BSC-DEA Model

\[
\max_{u,v} \quad s_0 = \sum_r u_r y_{r0}
\]

\[s.t.\]

\[
\sum_i v_i x_{i0} = 1
\]

\[
\sum_r u_r y_{rj} - \sum_i v_i x_{ij} \leq 0 \quad \forall j
\]

\[- \sum_{r \in C_k} u_r y_{r0} + L_{C_k} \sum_{r \in C_0} u_r y_{r0} \leq 0 \quad k = 1, \ldots, \bar{k}
\]

\[
\sum_{r \in C_k} u_r y_{r0} - U_{C_k} \sum_{r \in C_0} u_r y_{r0} \leq 0 \quad k = 1, \ldots, \bar{k}
\]

\[
u_i \geq \varepsilon
\]

\[
u_i \geq \varepsilon
\]

5/31/2004
Feasible Region for the Upper and Lower Bounds

Possible

Not Possible

\[L_i \geq 0 \]
\[U_i \leq 1 \]
\[L_i \leq U_i \]
BSC-DEA: Illustrations

Figure 1: Two-dimensional expected output including 51 enveloping branches

Figure 2: Scores attained by the DEA-BSC model for the enveloping branches on *curve a* for two sets of balancing limits
A Decision Support Model

Budget Reallocation among Branches

- Apply relative balanced scoring model on all active and candidate branches
- Generate relative scoring table for each review period t
- Close some branches as a function of:
 - Pre-determined relative thresholds on critical factors, group of indicators or total scoring
 - Scoring trends of branches over time periods
 - Other managerial considerations
- Compute the amount of free resources R

Golany, Phillips, Rousseau *IIE Transactions* 93
Parameters and Variables

- **Sets** $P(C)$: Set of (candidate) active branches.
- **Scores** S_j: Score of branch j (score of candidate branch j)
- **Bounds** $\text{Max (min) budget allocation for branch } j$
- **Other parameters** R: remaining budget (after canceling non-attractive branches, N_{max}: max no. of branches.
- **Variables** X_j: budget allocation to branch j, u_j: zero one “selector” of branch j.

A Decision Support Model...2
A Decision Support Model...3

IP Formulation

\[
\begin{align*}
\text{Max} & \quad \sum_{j \in P} s_j x_j + \sum_{j \in C} \hat{s}_j x_j \\
\text{s.t.} & \quad \sum_{j \in N} x_j \leq R, \\
& \quad x_j \leq b_j^{\max} u_j, \quad j \in N \\
& \quad x_j \geq b_j^{\min} u_j, \quad j \in N \\
& \quad \sum_{j \in N} u_j \leq n_{\max}, \quad j \in N \\
& \quad u_j \in \{0,1\}, \quad j \in N \\
& \quad x_j \geq 0, \quad j \in N
\end{align*}
\]
Outline

- **Past**
 - <1978: Profit measures, Operational efficiency
 - 1978-1998: Data Envelopment Analysis

- **Present considerations**
 - Too many factors (DEA-PCA)
 - Balancing strategic objectives (DEA-BSC)
 - **Multi-stage systems**

- **Future**
 - Drivers of change
 - Will branches disappear?
The Conventional Approach

A branch with some inputs and outputs… one of n such branches

Efficiency = sum of weighted outputs divided by a sum of weighted inputs

Golany, Hackman, Passy, AOR 04
DEA Input Efficiency: A Numerical Example

\[K_2 = 100 \]
\[I = 40 \]
\[L_2 = 100 \]
\[F = 300 \]
\[\theta^*_2 = 0.6 \Rightarrow \]

\[K_2 = 60 \]
\[I = 24 \]
\[L_2 = 60 \]
\[F = 300 \]
Technical inefficiency (P_1 & P_2):
- too much resources for the given output, or
- too little output for the given resources, or
- both

Allocative inefficiency (aggregate unit):
- inappropriate allocation of K & L to the two processes
Aggregate Efficiency: Classical DEA

The weighting model

\[\text{Max} \quad \frac{\pi_F \cdot F_0}{\pi_K \cdot K_0 + \pi_L \cdot L_0} \quad \pi_F \cdot F_j \quad \pi_K \cdot K_j + \pi_L \cdot L_j \leq 1\]

The envelopment model

\[\theta_A^{(CL)} = \text{Min} \quad \theta_A \quad \sum_j \lambda_j \cdot K_j \leq \theta_A \cdot K_0 \]
\[\sum_j \lambda_j \cdot L_j \leq \theta_A \cdot L_0 \]
\[\sum_j \lambda_j \cdot F_j \geq F_0\]
Disaggregate Efficiency

\[
\theta_A^{(DA)} = \text{Max}\left\{ \left[\frac{K_{10}}{K_0} \cdot \theta_1^* + \frac{K_{20}}{K_0} \cdot \theta_2^* \right], \left[\frac{L_{10}}{L_0} \cdot \theta_1^* + \frac{L_{20}}{L_0} \cdot \theta_2^* \right] \right\}
\]

\[
\theta_1^* = \text{Min} \theta_1 \\
\sum_j \lambda_{1j} \cdot K_{1j} \leq \theta_1 \cdot K_{10} \\
\sum_j \lambda_{1j} \cdot L_{1j} \leq \theta_1 \cdot L_0 \\
\sum_j \lambda_{1j} \cdot I_j \geq 0
\]

\[
\theta_2^* = \text{Min} \theta_2 \\
\sum_j \lambda_{2j} \cdot K_{2j} \leq \theta_2 \cdot K_{20} \\
\sum_j \lambda_{2j} \cdot L_{2j} \leq \theta_2 \cdot L_{20} \\
\sum_j \lambda_{2j} \cdot I_j \leq \theta_2 \cdot I_0 \\
\sum_j \lambda_{2j} \cdot F_j \geq F_0
\]
Aggregate Efficiency: Complete Transferability of Resources

\[
\begin{align*}
\text{Max} & \quad \frac{\pi_F \cdot F_0}{\pi_K \cdot K_0 + \pi_L \cdot L_0} \\
& \quad \frac{\pi_I \cdot I_j}{\pi_K \cdot K_{1j} + \pi_L \cdot L_{1j}} \leq 1 \\
& \quad \frac{\pi_F \cdot F_j}{\pi_K \cdot K_{2j} + \pi_L \cdot L_{2j} + \pi_I \cdot I_j} \leq 1
\end{align*}
\]

\[
\theta_A^{(CT)} = \text{Min} \quad \theta_A \\
\sum_j \lambda_{1j} \cdot K_{1j} + \sum_j \lambda_{2j} \cdot K_{2j} \leq \theta_A \cdot K_0 \\
\sum_j \lambda_{1j} \cdot L_{1j} + \sum_j \lambda_{2j} \cdot L_{2j} \leq \theta_A \cdot L_0 \\
\sum_j \lambda_{1j} \cdot I_j - \sum_j \lambda_{2j} \cdot I_j \geq 0 \\
\sum_j \lambda_{2j} \cdot F_j \geq F_0
\]
Allocative Efficiency

\[\theta_A^{(AE)} = \frac{\theta_A^{(CT)}}{\theta_A^{(DA)}} \]
Consistent Pricing Model: Analysis of P_1

$$\text{Max} \quad \frac{\pi_i \cdot I_0}{\pi_K \cdot K_{10} + \pi_L \cdot L_{10}}$$

$$\frac{\pi_i \cdot I_j}{\pi_K \cdot K_{1j} + \pi_L \cdot L_{1j}} \leq 1$$

$$\frac{\pi_F \cdot F_j}{\pi_K \cdot K_{2j} + \pi_L \cdot L_{2j} + \pi_i \cdot I_j} \leq 1$$

$\pi^*_F = 0 \implies$ separability
Consistent Pricing Model: Analysis of P_2

\[\begin{align*}
\text{Max} & \quad \frac{\pi_F \cdot F_0}{\pi_K \cdot K_{20} + \pi_L \cdot L_{20} + \pi_I \cdot I_0} \\
& \quad \frac{\pi_I \cdot I_j}{\pi_K \cdot K_{1j} + \pi_L \cdot L_{1j}} \leq 1 \\
& \quad \frac{\pi_F \cdot F_j}{\pi_K \cdot K_{2j} + \pi_L \cdot L_{2j} + \pi_I \cdot I_j} \leq 1
\end{align*}\]

\[\begin{align*}
\theta_2^{(os)} &= \text{Min} \quad \theta_2 \\
& \quad \sum_j \lambda_{1j} \cdot K_{1j} + \sum_j \lambda_{2j} \cdot K_{2j} \leq \theta_2 \cdot K_{20} \\
& \quad \sum_j \lambda_{1j} \cdot L_{1j} + \sum_j \lambda_{2j} \cdot L_{2j} \leq \theta_2 \cdot L_{20} \\
& \quad - \sum_j \lambda_{1j} \cdot I_j + \sum j \lambda_{2j} \cdot I_j \leq \theta_2 \cdot I_0 \\
& \quad \sum_j \lambda_{2j} \cdot F_j \geq F_0
\end{align*}\]
Interpretation Through an Outsourcing Option

- P_2 has an option to allocate a portion of its capital (K) and labor (L) to an efficient (composite) stage 1 that will produce with it some intermediate factor (I).

- It may be worth doing so if the P_1 composite unit is very efficient in producing I and there is an efficient composite P_2 that can use the extra I with relatively little K and L to produce more F.
Outsourcing Option: Numerical Example

Observed Unit

$K_2 = 100$
$I = 40$
$L_2 = 100$

Composite Units

$K_1 = 20$
$L_1 = 25$

$F = 300$
$I = 26$

$\theta^*_2 = 0.6 \Rightarrow$

$K_2 = 60$
$I = 24$
$L_2 = 60$

$F = 300$
$I = 50$
$L_2 = 35$

$K_2 = 40$
$L_2 = 60$

Outsourcing Option:

$K = 26$
$L = 80$

I = 26
F = 300

θ = 40
Efficiency Tradeoffs:
Analysis of P_1 given P_2's efficiency

\[
\begin{align*}
\text{Max} \quad & \frac{\pi_I \cdot I_0}{\pi_K \cdot K_{10} + \pi_L \cdot L_{10}} \\
& \quad \frac{\pi_I \cdot I_j}{\pi_K \cdot K_{1j} + \pi_L \cdot L_{1j}} \leq 1 \\
& \quad \frac{\pi_F \cdot F_j}{\pi_K \cdot K_{2j} + \pi_L \cdot L_{2j} + \pi_I \cdot I_j} \leq 1 \\
& \quad \frac{\pi_F \cdot F_0}{\pi_K \cdot K_{20} + \pi_L \cdot L_{20} + \pi_I \cdot I_0} \geq T_2
\end{align*}
\]

$\delta = 0 \gg \lambda_{2j}^* = 0 \gg$ the program reduces to the ordinary envelopment of P_1

$\theta_1^{(AQ)} = \text{Min} \quad \theta_1$

$\sum_j \lambda_{1j} \cdot K_{1j} + \sum_j \lambda_{2j} \cdot K_{2j} \leq \theta_1 \cdot K_{10} + \delta \cdot T_2 \cdot K_{20}$

$\sum_j \lambda_{1j} \cdot L_{1j} + \sum_j \lambda_{2j} \cdot L_{2j} \leq \theta_1 \cdot L_{10} + \delta \cdot T_2 \cdot L_{20}$

$\sum_j \lambda_{1j} \cdot I_j - \sum_j \lambda_{2j} \cdot I_j \geq I_0 - \delta \cdot T_2 \cdot I_0$

$\sum_j \lambda_{2j} \cdot F_j \geq \delta \cdot F_0$
Interpretation Through an Acquisition Option

- A composite P_2 is constructed using T_2 and a scale factor δ
- P_1 acquires the resources of P_2, scaled down by the product of T_2, and δ, promising to supply the scaled output δF.
- P_1 allocates part of its own K and L together with $\delta T_2 K_2$, $\delta T_2 L_2$ to two efficient composites of P_1 and P_2
- The composite P_1 produces more I than is required by the composite P_2
- The composite P_2 produces the promised F.
- The unused amount $\delta T_2 I$ plus the unused portion of I from the composite P_1 equal the output I of the observed P_1
- The unused portion of K,L from P_1 represents its inefficiency
Outline

- **Past**
 - <1978: Profit measures, Operational efficiency
 - 1978-1998: Data Envelopment Analysis

- **Present considerations**
 - Too many factors (DEA-PCA)
 - Balancing strategic objectives (DEA-BSC)
 - Multi-stage systems

- **Future**
 - Drivers of change
 - Will branches disappear?
Drivers of change

- Increased competition from non-traditional institutions
- New information technologies
- Erosion of product and geographic boundaries
- Less restrictive governmental regulations
Fundamental Financial Functions

- Making payments
- Pooling resources
- Transfer economic resources
- Managing risks
- Price information
- Handle incentive problems
To specialize or not to specialize?

- **Moving towards one-stop shopping**
 - Mutual funds offer check-writing privileges
 - NationsBank Corp. broadens its product line

- **Moving towards specialization**
 - State Street Bank & Trust to focus only on servicing financial assets
 - Bankers Trust shed its retail banking business
 - Signet Bank drops its credit card business
Inherent inefficiency in branches

- Provider's perspective
 - Expensive real-estate
 - Low utilization of expensive servers
- Customer perspective
 - Transportation difficulties
 - Restricted hours of operation
Will branches disappear?

- **Restructuring**: few major branches, multiple “satellite” branches (some in supermarkets or malls)
- **Remote control**: use internet sites, call centers, ATMs for most transactions, employ dispatching service when necessary
- **Outsource**: a single “branch service” company serves multiple banks
- **Do-it-yourself**: large corporations provide their own guarantee of credit, do their own foreign exchange trading, etc.