Informazioni generali sul Corso di Studi

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Università</td>
<td>Università degli Studi di BERGAMO</td>
</tr>
<tr>
<td>Nome del corso in italiano</td>
<td>Ingegneria gestionale (IdSua:1583062)</td>
</tr>
<tr>
<td>Nome del corso in inglese</td>
<td>Management Engineering</td>
</tr>
<tr>
<td>Classe</td>
<td>LM-31 - Ingegneria gestionale</td>
</tr>
<tr>
<td>Lingua in cui si tiene il corso</td>
<td>italiano</td>
</tr>
<tr>
<td>Eventuale indirizzo internet del corso di laurea</td>
<td>https://ls-ig.unibg.it/it</td>
</tr>
<tr>
<td>Tasse</td>
<td>https://www.unibg.it/node/262</td>
</tr>
<tr>
<td>Modalità di svolgimento</td>
<td>a. Corso di studio convenzionale</td>
</tr>
</tbody>
</table>

Referenti e Strutture

<table>
<thead>
<tr>
<th>Presidente (o Referente o Coordinatore) del CdS</th>
<th>PINTO Roberto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organo Collegiale di gestione del corso di studio</td>
<td>Consiglio di Corso di Studio in Ingegneria Gestionale</td>
</tr>
<tr>
<td>Struttura didattica di riferimento</td>
<td>Ingegneria gestionale, dell'informazione e della produzione</td>
</tr>
</tbody>
</table>

Docenti di Riferimento

<table>
<thead>
<tr>
<th>N.</th>
<th>COGNOME</th>
<th>NOME</th>
<th>SETTORE</th>
<th>QUALIFICA</th>
<th>PESO</th>
<th>TIPO SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>KALCHSCHMIDT</td>
<td>Matteo Giacomo Maria</td>
<td>PO</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>MACCARINI</td>
<td>Giancarlo</td>
<td>PO</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>MEOLI</td>
<td>Michele</td>
<td>PA</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>MINOLA</td>
<td>Tommaso</td>
<td>PA</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Il Corso di Studio in breve

Il Corso di Laurea Magistrale in Ingegneria Gestionale sviluppa e potenzia i contenuti culturali e gli obiettivi formativi del Corso di Laurea di primo livello in Ingegneria Gestionale. In particolare, si prefigge l'obiettivo di formare una figura professionale dalle solide basi ingegneristiche, in grado di progettare, gestire e dirigere processi aziendali complessi in contesti dinamici, coniugando le scelte tecnologiche e informatiche con gli aspetti economici e organizzativi.

La durata del corso di laurea è di norma di due anni per gli studenti a tempo pieno e prevede l'acquisizione di 120 crediti formativi universitari (CFU).

Nel corso di laurea sono previsti 12 esami, laboratori, attività di tirocinio e la prova finale. Parte delle attività potranno essere svolte nell'ambito di programmi di mobilità internazionale presso Università estere.

I laureati del Corso di Laurea Magistrale in Ingegneria Gestionale potranno trovare occupazione, sia a livello tecnico-operativo che a livello dirigenziale, nell'ambito delle strutture pubbliche e private, sia nel settore industriale che in quello dei servizi.
Le competenze distintive sono: utilizzare le tecnologie, coordinare le risorse umane, elaborare le strategie aziendali, gestire il sistema produttivo e logistico, analizzare gli investimenti, gestire l'innovazione. Più specificatamente il corso prepara professionalità multidisciplinari e trasversali su più settori, quali imprese industriali, società di pubblica utilità, servizi logistici integrati, servizi nell'area sanità, servizi di manutenzione e after-sales, consulenza organizzativa, manageriale e direzionale, consulenza finanziaria.

Link: https://ls-ig.unibg.it/it (Corso di Laurea Magistrale in Ingegneria Gestionale)
Il collegio didattico del corso di laurea in Ingegneria Gestionale ha in diverse occasioni, anche in modo informale, sentito l'opinione delle principali organizzazioni rappresentative a livello locale della produzione, servizi e professioni (tra cui Confindustria di Bergamo, Servitec, Camera di Commercio, Ordine degli Ingegneri).

Periodicamente il Consiglio di Corso di Studi (CCS) conduce indagini per valutare la risposta della percorso formativo con le esigenze del mercato del lavoro. In tali occasioni, sono state considerate diverse fonti e condotti incontri e consultazioni sia a livello formale che informale con le principali parti rappresentative del mondo della produzione di beni e servizi e nel campo delle professioni - quali Confindustria Bergamo, Camera di Commercio della provincia di Bergamo, Ordine degli Ingegneri della provincia di Bergamo, Bergamo Sviluppo - per la definizione dei fabbisogni formativi del profilo professionale e degli sbocchi occupazionali.

Tra questi incontri, quelli più significativi a livello formale sono stati:
- Seminario dal titolo 'A GLIMPSE INTO THE FUTURE OF WORK: Engineering, Managerial and Legal Challenges for Work 4.0 & the Operator 4.0' organizzato in data 21 marzo 2018 in collaborazione con i CdS in Ingegneria Gestionale e in presenza di una rappresentanza delle parti interessate e delle aziende [1]. Le risultanze del seminario e della successiva discussione, possono essere sintetizzate nei seguenti punti: i) si prevede una maggiore richiesta di figure professionali con buone competenze di base, interdisciplinarietà e capacità di adattabilità e flessibilità; ii) i lavori che si sviluppano sono quelli non routinari e che necessitano di alte competenze; iii) le principali skill che verranno richiesti sono legati al Complex Problem Solving, Critical Thinking, e Creativity; iv) si prevede una maggiore richiesta di competenze di gestione dell'interfaccia tra automazione e le figure professionali richieste [2]. Tali considerazioni appaiono confermate dall'intervista a Gianni Potti, presidente di CNCT - Confindustria Servizi Innovativi e Tecnologici, dal titolo 'Industria 4.0, queste le figure professionali che mancano in Italia', il quale si afferma come '[...]la figura ideale del supertechnico che sappia governare l'Industria 4.0 [...] dovrebbe avere competenze di ingegneria gestionale (per comprendere la re-ingegnerizzazione dell'intero processo produttivo!), competenze economiche (per cogliere gli impatti finanziari e di mercato) e ovviamente competenze IT e digitali (perché sono l'ossatura dell'Industria 4.0)' [3].
- Consultazione delle parti interessate del 21 novembre 2019 che ha visto la partecipazione di rappresentanti di Confindustria Bergamo, Camera di Commercio di Bergamo, Bergamo Sviluppo e Ordine degli Ingegneri della provincia di Bergamo [4]. In tale occasione è stata ulteriormente rimarcata l'esigenza di una figura professionale in grado di supportare le aziende in un contesto dinamico, complesso e internazionale attraverso l'integrazione di più ambiti disciplinari. In occasione di questo confronto con le parti interessate è emerso un sostanziale allineamento rispetto alla figura del laureato in Ingegneria Gestionale e rispetto alle esigenze in termini di competenza e professionalità che tale figura va a ricoprire (cfr. quadro A2.a).

I docenti afferenti al Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione (DIGIP) mantengono contatti costanti con le aziende del territorio attraverso collaborazioni che spaziano dalla realizzazione di progetti di ricerca alla realizzazione di tesi e tirocini. Queste collaborazioni consentono di avere un confronto continuo con le esigenze delle aziende in termini di competenze dei profili in uscita dal percorso formativo.

Nel corso del 2019 è stato realizzato uno studio denominato 'Progetto Competenze 4.0' da parte di alcuni docenti del DIGIP in collaborazione con Confindustria - Club dei 15, il cui intento era quello di individuare casi aziendali rappresentativi di come il paradigma Industria 4.0 potesse impattare, dal punto di vista delle competenze, sulle professionalità già esistenti e sulla creazione di nuove figure professionali [5]. Dalle risultanze del progetto è emersa la necessità di affiancare ai ruoli più tecnici una figura con competenze gestionali, in grado da fungere da interfaccia per l'integrazione tra le diverse
funzioni aziendali, al fine di orientare il cambiamento tecnologico verso una strategia comune e condivisa.

Per quanto riguarda le fonti documentali consultate, vengono evidenziati in sintesi:
- dati Excelsior Unioncamere che riportano una difficoltà di reperimento della figura dell'ingegnere gestionale e industriale piuttosto elevata: 36% a livello di regione Lombardia e 39% a livello nazionale [6].
- i dati AlmaLaurea sulla Condizione occupazionale dei laureati, i quali registrano un tasso di occupazione per i laureati magistrali in ingegneria gestionale pari al 92,2% ad un anno dalla laurea, che sale al 95,6% a cinque anni dal titolo [7].
- i dati della banca dati ISFOL (Gruppo " Professioni" nell'ambito della struttura "Lavoro e professioni") relativa alla professione dell'Ingegnere Gestionale [8].

Il confronto continuo e l'attenzione al territorio hanno portato alla proposta di istituzione di un CdS erogato in inglese per rispondere alle diverse esigenze.

QUADRO A1.b Consultazione con le organizzazioni rappresentative - a livello nazionale e internazionale - della produzione di beni e servizi, delle professioni (Consultazioni successive)

Il CdS ha avuto rapporti formalizzati con la Confindustria per la progettazione e il mantenimento di un percorso di specializzazione nell'ambito tessile. In tale contesto è stata sottoscritta una convenzione tra l'Università degli Studi di Bergamo e Confindustria Bergamo del 19-06-2014 (prot. N. 0031140/III/14) che prevede momenti di consultazione annuali. Il risultato di tale processo di consultazione è il mantenimento del Curriculum 'Tecnologie e Materiali Innovativi per l'Industria Tessile', la cui attivazione è subordinata al raggiungimento di almeno 10 studenti iscritti e al rinnovo del finanziamento da parte di Confindustria Bergamo.

Oltre ai momenti formali delle consultazioni, un canale efficace di dialogo con il mondo delle imprese è stato rappresentato, dall'istituzione del CdS, dai tirocini formativi e dalle tesi svolte in azienda, cui partecipa una parte degli studenti. Le indicazioni ottenute, sia mediante il continuo rapporto informale diretto dei docenti convolti, sia mediante la compilazione di un questionario da parte delle imprese, i cui risultati vengono discussi nei consigli di corso di studi, danno la possibilità di avere un riscontro sui livelli di competenza raggiunti dal percorso formativo, su quelli richiesti del mondo delle imprese, e sulle principali aree di miglioramento.

In data 23 giugno 2016 è stato avviato un processo di consultazione formale con le parti sociali, a livello di scuola di Ingegneria con Direttori di Dipartimento e Coordinatori di CCS. Le caratteristiche di tale processo sono di seguito sintetizzate.
- Tipologia delle organizzazioni consultate direttamente: CONfindustria Bergamo, Ordine degli Ingegneri della Provincia di Bergamo.
- Ruoli ricoperti dai partecipanti alla consultazione: Presidente del Gruppo di Lavoro Università di Confindustria Bergamo,
Segretario del Gruppo di Lavoro Università di Confindustria Bergamo, Membri del Consiglio di CONINDUSTRIA Bergamo, Rappresentanti di alcune Aziende, Delegata del Comitato di Indirizzo della Scuola di Ingegneria dell'Università degli Studi di Bergamo.

- Modalità e cadenza di studi e consultazioni: invito presso la Scuola di Ingegneria, presentazione della Scuola e dei principali facts & figures, presentazione dei CdS e dei profili dei laureati, discussione aperta durante le presentazioni, invito a commenti e suggerimenti, cadenza biennale.

La risultanze della consultazione sono state prese in considerazione nella progettazione del CdS. Per quanto riguarda la richiesta di maggiore utilizzo del tirocinio, il consiglio di corso di studi ha approvato delle indicazioni per permettere più facilmente agli studenti di usufruire del tirocinio, che qualora abbia anche finalità formative potrà essere associato al lavoro di tesi, consentendo di inserirlo tra i crediti a libera scelta dello studente, fino ad un massimo di 6cfu, oppure come credito sovranumerale. A livello di scuola di Ingegneria, si è proceduto a rendere noto all'Ateneo le difficoltà riscontrate nell'accesso da parte delle aziende al sito Esse3 che gestisce le domande e le richieste di tirocini.

Il CdS gestisce direttamente una pagina facebook (https://www.facebook.com/ManagementEngineeringUniBG/) nella quale provvede anche a rendere noti i tirocini disponibili.

Per quanto riguarda la richiesta di un livello maggiore di internazionalizzazione, il CdS sta portando avanti un ampliamento notevole degli scambi con l'estero nell'ambito dei programmi Erasmus+, in accordo con le indicazioni ricevute dalla consultazione.

Il CCS si è interrogato sull'opportunità di avviare consultazioni con le parti sociali più specifiche rispetto alla figura professionale dell'ingegnere gestionale. A tale scopo, il Consiglio di Corsi di Studi il 19 aprile 2018 ha discusso e approvato la costituzione di un comitato d'indirizzo per i CdS in Ingegneria Gestionale. Nel comitato sono rappresentati esponenti del mondo del lavoro, delle imprese e delle associazioni, che richiedono le competenze tipiche di un ingegnere gestionale e che meglio ne rappresentano la domanda.

Il comitato in particolare è composto da due rappresentanti di imprese manifatturiere (l'ambito manifatturiero è il primo settore d'impiego per ingegneri gestionali), un rappresentante dei servizi per le imprese manifatturiere, un rappresentante per i servizi di carattere finanziario, un rappresentante dei servizi legati all'Information Technology, e un rappresentante di un'impresa di selezione del personale. Gli obiettivi del comitato sono:

1. facilitare e promuovere i rapporti tra l'università e il contesto economico e produttivo;
2. analizzare le informazioni disponibili sui CdS in Ingegneria Gestionale, tra cui i percorsi e i piani degli studi offerti, i programmi degli insegnamenti, le indagini occupazionali e di soddisfazione dei laureati e delle aziende;
3. migliorare il quadro informativo sui fabbisogni di professionalità negli ambiti dell'Ingegneria Gestionale, anche mediante l'utilizzo di fonti esterne di informazione (studi di settore, report di organismi nazionali e internazionali), per favorire una comprensione a largo raggio delle tendenze in atto nel mercato del lavoro e dell'evoluzione delle esigenze di formazione;
4. avvicinare i percorsi formativi in Ingegneria Gestionale alle esigenze del mondo del lavoro.

La frequenza di consultazione del Comitato d'Indirizzo è annuale, con la prima consultazione effettuata il giorno 18 maggio 2018. In allegato si riporta il verbale della consultazione.

Oltre ai rapporti diretti con gli enti e le organizzazioni del mondo del lavoro, il CdS periodicamente analizza studi di settore e indagini occupazionali per verificare l'aderenza della propria offerta formative alle esigenze del mondo del lavoro, e organizza eventi specifici atti ad analizzare e discutere l'impatto dei cambiamenti in atto sulla domanda di ingegneri gestionali.

Il 21 marzo 2018 è stato organizzato in collaborazione con i CdS in Ingegneria Gestionale e in presenza di una rappresentanza delle parti sociali, un seminario dal titolo 'A GLIMPSE INTO THE FUTURE OF WORK: Engineering, Managerial and Legal Challenges for Work 4.0 & the Operator 4.0'.

Le risultanze del seminario e delle successive tavola discussione, possono essere sintetizzate nei segniti punti:

- si prevede una maggiore richiesta di figure professionali con buone competenze di base, interdisciplinarietà e capacità di adattabilità e flessibilità e un buon metodo di studi (Learn how to learn);
- i lavori che si svilupperanno sono quelli non routinari e che necessitano di alte competenze;
- i principali skill che verranno richiesti sono legati al Complex Problem Solving, Critical Thinking, e Creativity;
La figura dell'ingegnere gestionale appare ben posizionata in tale contesto di mutamento. Il CCS (riunione del 19 aprile 2018) si sta interrogando su come adattare la propria offerta formativa allo scopo di meglio assecondare questi mutamenti tecnologici-organizzativi.

Per quanto riguarda gli studi di settore, oltre ai rapporti occupazionali di Almalaurea, vengono periodicamente (semesratalmente o annualmente) consultati i rapporti e studi prodotti da associazioni di categoria e organizzazioni nazionali ed internazionali, quali:

- Excelsior Unioncamere; Rapporto sulla domanda e l'offerta di laureati e diplomati; Il monitoraggio dei fabbisogni professionali dell'industria e dei servizi per favorire l'occupabilità: http://excelsior.unioncamere.net/images/publicazioni2017/excelsior_2017_laureati.pdf
- La banca dati ISFOL (Gruppo 'Professioni' nell'ambito della struttura 'Lavoro e professioni') relativa alla professione dell'Ingegnere Gestionale: http://fabbisogni.isfol.it/scheda.php?limite=1&id=2.2.1.7.0

Si prevede una crescita dal 2015 al 2019 delle richieste da parte delle imprese di ingegneri industriali e ingegneri gestionali.

- ARIFL - Agenzia Regionale per l'Istruzione, la Formazione e il Lavoro della Regione Lombardia (Rapporto annuale-https://arifl.app.box.com/s/hqj1xv9jcl5tzfzm8k1936reqz2u7yj); Si segnala la presenza di una forte ripresa dell'attività industriale (come saldo tra avviamenti e cessazioni). La grande maggioranza delle nuove attività con livello di skill 'alto' è nel settore del commercio e servizi, seguito dall'industria (p.33), tipici settori di impiego per ingegneria gestionale.

A livello internazionale vengono monitorati i seguenti rapporti, con l'obiettivo di analizzare le prospettive occupazionali per Ingegneria e la Gestione delle Imprese:

I risultati di questi report vengono periodicamente discussi nel consiglio di corso di studi. La gamma degli enti e delle organizzazioni consultate appare adeguatamente rappresentativa soprattutto a livello regionale, l'ambito geografico nel quale la maggior parte degli ingegneri gestionali magistrali trova occupazione.
Ingegnere Gestionale

funzione in un contesto di lavoro:
Il laureato in Ingegneria Gestionale può ricoprire ruoli di direzione, coordinamento e controllo volti a:

- risolvere problemi organizzativi e gestionali complessi nell’ambito di diverse funzioni aziendali e relativi ai processi di produzione di beni e servizi all’interno di imprese manifatturiere, aziende di servizio e pubbliche amministrazioni;
- gestire i processi decisionali (strategici, tattici, operativi) dell’azienda in un contesto dinamico e complesso, sia in ambito pubblico che privato;
- valutare adeguatamente e gestire l’integrazione tra gli aspetti tecnici, organizzativi, economici e finanziari connessi alle scelte tecnologiche relative sia ai processi produttivi e di erogazione dei servizi sia ai processi decisionali e gestionali;
- favorire e gestire l’innovazione tecnologica, valutando le implicazioni di natura strategica, finanziaria e organizzativa;
- gestire le relazioni tra i sistemi produttivi dell’impresa e i sistemi informativi di supporto.

Il corso di laurea intende quindi formare laureati in grado di identificare, analizzare e risolvere i problemi propri delle moderne organizzazioni aziendali - pubbliche e private - operando in un’ampia tipologia di professioni il cui ambito di intervento spazia, a titolo di esempio: dalla pianificazione dei sistemi produttivi alla pianificazione strategica e operativa nelle aree degli acquisti, vendite, marketing, finanza; dalla gestione delle risorse umane al controllo di gestione; dalla gestione dei progetti, della supply chain e della logistica, alla progettazione dei servizi e alla gestione delle aziende pubbliche.

competenze associate alla funzione:
Le competenze distintive del laureato magistrale in Ingegneria Gestionale sono:
- capacità di progettare processi decisionali efficaci e coerenti rispetto ai diversi livelli di analisi (strategico, tattico, operativo) e in diversi ambiti;
- capacità di identificare le esigenze e le opportunità di innovazione di prodotto, di processo e di business model a livello strategico, con particolare riferimento al ruolo e all’integrazione delle tecnologie;
- capacità di comprendere e gestire le interdipendenze tra scelte tecnologiche, organizzative e gestionali;
- capacità di elaborare le strategie aziendali in un’ottica globale;
- capacità di progettare e gestire sistemi produttivi, logistici e di erogazione dei servizi;
- capacità di gestire la finanza aziendale e analizzare gli investimenti.

sbochi occupazionali:
I laureati del corso di laurea magistrale in Ingegneria Gestionale potranno trovare occupazione, sia a livello tecnico-gestionale che a livello dirigenziale, nell’ambito delle strutture pubbliche e private, sia nel settore industriale che in quello dei servizi.
Più specificatamente il corso prepara professionalità polifunzionali e trasversali su più settori, quali imprese industriali, società di pubblica utilità, servizi logistici integrati, servizi nell’area sanità, servizi di manutenzione e post vendita, consulenza organizzativa, manageriale e direzionale, consulenza finanziaria.
1. Ingegneri industriali e gestionali - (2.2.1.7.0)
2. Specialisti della gestione e del controllo nelle imprese private - (2.5.1.2.0)
3. Specialisti dell'organizzazione del lavoro - (2.5.1.3.2)
4. Specialisti in attività finanziarie - (2.5.1.4.3)
5. Specialisti nell'acquisizione di beni e servizi - (2.5.1.5.1)
6. Specialisti nella commercializzazione di beni e servizi (escluso il settore ICT) - (2.5.1.5.2)

28/04/2020

L'ammissione alla Laurea Magistrale è soggetta a un processo di valutazione basato su requisiti curricolari (carriera accademica) e sulla verifica della preparazione personale che attesti l'idoneità del candidato. Lo studente deve disporre di un adeguato livello di conoscenze relative alle componenti di base dell'ingegneria e dell'ingegneria gestionale in particolare.

L'accesso sarà quindi concesso a chi abbia acquisito:
- un titolo di laurea (di primo livello), diploma universitario di durata triennale, laurea specialistica, laurea magistrale o titolo equivalente, o altro titolo acquisito all'estero e riconosciuto idoneo;
- almeno 30 CFU nelle attività formative di base (Matematica, Fisica, Chimica e Statistica) (SSD CHIM/03, CHIM/07, FIS/01, FIS/03, INF/01, ING-INF/05, MAT/02, MAT/03, MAT/05, MAT/06, MAT/07, MAT/08, MAT/09, SECS-S/02);

La preparazione personale è valutata sulla base del voto di laurea triennale.

Il regolamento didattico del corso di studio disciplina le modalità con cui è effettuata la verifica del possesso dei requisiti curricolari e della preparazione personale.
QUADRO A3.b Modalità di ammissione

25/05/2022

L’ammissione alla laurea magistrale è subordinata al soddisfacimento dei requisiti curriculari descritti nel quadro A3.a “Conoscenze richieste per l’accesso” in termini di possesso di una laurea in determinate classi e di CFU in determinati Settori Scientifico-Disciplinari.

La verifica dell’adeguatezza della personale preparazione è svolta secondo i seguenti criteri:
- per i candidati in possesso di un titolo di studio conseguito in Atenei italiani si può considerare assolta in presenza di voto di laurea superiore od uguale a 80/110;
- per i candidati studenti di Atenei italiani che non hanno ancora conseguito il titolo di studio triennale alla data di scadenza per la preiscrizione, si considera assolta in presenza di una media ponderata degli esami fino ad allora sostenuti superiore od uguale a 21/30;
- in tutti gli altri casi, l’ammissione è subordinata al superamento di un colloquio individuale che verterà sui temi tipici dell’Ingegneria Gestionale come ad esempio: fondamenti, metodi, approcci e casi dell’ingegneria economico-gestionale, degli impianti industriali meccanici e delle tecnologie e sistemi di lavorazione.

Il possesso di adeguate competenze linguistiche sarà verificato mediante colloquio a meno che lo studente non disponga di certificazioni linguistiche riconosciute dall’Ateneo che sostituiscono i livelli richiesti di conoscenze iniziali. Si veda in proposito il sito di Ateneo alla pagina HOME > STUDIARE > FREQUENTARE> APPRENDIMENTO LINGUISTICO > RICONOSCIMENTO CERTIFICAZIONI LINGUISTICHE.

Per i candidati internazionali richiedenti visto e per tutti i candidati in possesso di titolo accademico estero che accedono alla procedura di prevalutazione online, il colloquio svolto nell’ambito della prevalutazione della carriera pregressa ai fini dell’iscrizione a corsi di laurea magistrale sostituisce la verifica della preparazione iniziale valida per la generalità degli studenti. Il colloquio di prevalutazione verterà sui temi tipici dell’Ingegneria Gestionale come ad esempio: fondamenti, metodi, approcci e casi dell’ingegneria economico-gestionale, degli impianti industriali meccanici e delle tecnologie e sistemi di lavorazione.

Link : http://

Pdf inserito: visualizza
Descrizione Pdf: Settori scientifici disciplinari Ingegneria Gestionale

QUADRO A4.a Obiettivi formativi specifici del Corso e descrizione del percorso formativo

01/02/2021

Il Corso di laurea magistrale in Ingegneria Gestionale ha l'obiettivo di formare una figura professionale in grado di gestire
le diverse aree e funzioni di aziende private e pubbliche. Le competenze e gli strumenti metodologici acquisiti nel percorso di studi sono pertanto funzionali a una figura professionale in grado di affrontare:
- la gestione di problemi organizzativi e gestionali complessi legati alle diverse funzioni aziendali (ad esempio, produzione e operations, acquisti, logistica e supply chain, gestione risorse umane, finanza...) con un approccio sistematico, coerente con il contesto corrente e orientato alla previsione dei trend futuri;
- la gestione dei fattori produttivi, tra i quali il fattore umano, in relazione alle problematiche e opportunità economiche, organizzative e tecnologiche;
- la valutazione critica, supportata da approcci logico-quantitativi, e la gestione degli aspetti tecnici, economici, organizzativi e finanziari legati alle scelte di innovazione tecnologica;
- la progettazione e gestione di processi industriali, logistici e organizzativi, e dei relativi flussi informativi, all'interno di filiere complesse;
- lo sviluppo di nuove iniziative imprenditoriali e di business.

Percorso formativo
Il percorso formativo si articola su due anni, e gli insegnamenti afferiscono alle seguenti aree disciplinari:

- AREA ECONOMICO-GESTIONALE, che mira a fornire conoscenze avanzate nelle aree dell'economia, della finanza, del management e dell'organizzazione aziendale attraverso insegnamenti specifici relativi alla gestione delle risorse economico-finanziarie e umane, al progetto e controllo dei processi, all'imprenditorialità.

- AREA TECNOLOGICO-INDUSTRIALE, che sviluppa competenze tecniche e scientifiche nell'ambito dei processi industriali, produttivi e logistici con insegnamenti specifici relativi alla gestione delle operations, alla logistica e distribuzione, alla gestione della qualità, alla gestione del ciclo di vita dei prodotti e alla progettazione e gestione dei servizi.

- AREA DELLE COMPETENZE COMPLEMENTARI, che ha l'obiettivo di fornire conoscenze ingegneristiche e modellistiche nel campo della matematica, della statistica e dell'analisi dei dati.

In particolare, rispetto ai possibili sbocchi professionali a livello tecnico-gestionale e dirigenziale nel settore industriale e dei servizi è previsto il potenziamento delle conoscenze/abili tà di gestione e analisi della finanza, degli investimenti e delle strategie aziendali [Area Economico-Gestionale]; della gestione integrata della progettazione e della produzione, nonché della logistica e della qualità industriale [Area Tecnologico-Industriale]. Infine, a completamento delle precedenti, sono fornite specifiche competenze tecniche settoriali per l'analisi dei dati e la modellizzazione e ottimizzazione dei differenti sistemi [Area delle competenze complementari].

<table>
<thead>
<tr>
<th>Conoscenza e capacità di comprensione</th>
<th>I laureati del corso magistrale in Ingegneria Gestionale conoscono e comprendono gli approcci quantitativi, modellistici e interpretativi derivanti dall'applicazione di metodologie proprie dell'ingegneria - ed dell'ingegneria gestionale in particolare - coniugando il sapere tecnico-scientifico alla</th>
</tr>
</thead>
</table>
conoscenza approfondita dei processi e dei metodi decisionali al fine di creare, gestire e innovare aziende in ambito industriale e dei servizi.

Le conoscenze e la capacità di comprensione sono conseguite dagli studenti attraverso lezioni frontali (inclusi interventi seminari), discussione di casi in aula e attività di esercitazione guidata e autonoma negli ambiti Economico-Gestionale (SSD ING-IND/35, SECS-P/01, SECS-P/06), Tecnologico-Industriale (ING-INF/01, ING-INF/04, ING-INF/05, ING-IND/09, ING-IND/15, ING-IND/16, ING-IND/17) ed Matematico-Statistico (MAT/08, MAT/09, SECS-S/01, SECS-S/02) come dettagliato nel Quadro A4.b.2.

Le modalità di verifica delle conoscenze e capacità di comprensione si articolano in diverse modalità che includono il colloquio orale, la prova scritta, lo sviluppo di progetti e la successiva esposizione in sede d'esame, a seconda delle specificità dei temi trattati nei diversi insegnamenti.

<table>
<thead>
<tr>
<th>Capacità di applicare conoscenza e comprensione</th>
</tr>
</thead>
<tbody>
<tr>
<td>I laureati del corso magistrale in Ingegneria Gestionale acquisiscono e sviluppano capacità critiche di analisi, progettazione e gestione di sistemi aziendali complessi nel campo della produzione di beni e servizi, in ambito pubblico o privato. I laureati sono in grado di operare - in autonomia o in contesti collaborativi - in ambiti multi-culturali e multidisciplinari, applicando le conoscenze acquisite a diversi livelli, dalla direzione al coordinamento e controllo.</td>
</tr>
<tr>
<td>Lo sviluppo della capacità di applicare conoscenza e comprensione viene stimolato e verificato attraverso la realizzazione di progetti (individuali o di gruppo) che prevedono la discussione di casi e problemi ai quali gli studenti sono chiamati a fornire una soluzione applicando le conoscenze e competenze acquisite negli ambiti Economico-Gestionale (SSD ING-IND/35, SECS-P/01, SECS-P/06), Tecnologico-Industriale (ING-INF/01, ING-INF/04, ING-INF/05, ING-IND/09, ING-IND/15, ING-IND/16, ING-IND/17) ed Matematico-Statistico (MAT/08, MAT/09, SECS-S/01, SECS-S/02) come dettagliato nel Quadro A4.b.2.</td>
</tr>
<tr>
<td>Lo sviluppo della tesi di laurea rappresenta un ulteriore momento di verifica delle capacità acquisite in questo ambito.</td>
</tr>
</tbody>
</table>

QUADRO A4.b.2

Conoscenza e comprensione, e Capacità di applicare conoscenza e comprensione: Dettagli

Area Economico-Gestionale

Conoscenza e comprensione

- conoscenza dell'economia industriale, dei servizi e della regolamentazione delle imprese e dei mercati (SECS-P/01; SECS-P/06; ING-IND/35);
- analisi della finanza aziendale e conoscenza approfondita dei sistemi finanziari (ING-IND/35);
- comprensione dell'imprenditorialità, dell'innovazione e della strategia d'impresa (ING-IND/35; SECS-P/06);
- conoscenza della pianificazione, del marketing e dell'organizzazione delle risorse umane (ING-IND/35).

Capacità di applicare conoscenza e comprensione

- capacità di risolvere problemi organizzativi e gestionali complessi legati alle diverse aree aziendali;
- comprensione e valutazione degli aspetti economici, finanziari, strategici e operativi delle decisioni aziendali;
- capacità di promuovere l'imprenditorialità e l'innovazione;
- comprensione e capacità di analisi delle dinamiche di interazione delle imprese nei mercati.

Le conoscenze e capacità sono conseguite e verificate nelle seguenti attività formative:

- Visualizza Insegnamenti
- Chiudi Insegnamenti
- ANALISI DEI SISTEMI FINANZIARI I (FINANZA D'IMPRESA) [url]
- ECONOMIA DELLE RETI E DEI SERVIZI [url]
- ECONOMIA INDUSTRIALE (MODULO DI ECONOMIA INDUSTRIALE + MODULO DI MICROECONOMIA AVANZATA) [url]
- ECONOMIA SANITARIA [url]
- GESTIONE DELL'INNOVAZIONE E DEI PROGETTI [url]
- HEALTH ECONOMICS AND POLICY [url]
- HUMAN RESOURCE MANAGEMENT IN THE DIGITAL ERA [url]
- IMPRENDITORIALITÀ, INNOVAZIONE E MARKETING [url]
- MANAGEMENT DELLE IMPRESE MULTINAZIONALI [url]
- MANAGEMENT OF GLOBAL ENTERPRISES [url]
- MODULO DI ECONOMIA INDUSTRIALE (modulo di ECONOMIA INDUSTRIALE (MODULO DI ECONOMIA INDUSTRIALE + MODULO DI MICROECONOMIA AVANZATA)) [url]
- MODULO DI MICROECONOMIA AVANZATA (modulo di ECONOMIA INDUSTRIALE (MODULO DI ECONOMIA INDUSTRIALE + MODULO DI MICROECONOMIA AVANZATA)) [url]
- ORGANIZZAZIONE E GESTIONE DELLE RISORSE UMANE [url]
- PROGRAMMA HC. LAB: INNOVAZIONE E IMPRENDITORIALITÀ NELL'HEALTHCARE [url]
- PUBLIC MANAGEMENT [url]
- STARTUP AND DIGITAL TRANSFORMATION [url]
- STRATEGIA E SISTEMI DI PIANIFICAZIONE (PRACTICE) (modulo di STRATEGIA E SISTEMI DI PIANIFICAZIONE (THEORY E PRACTICE)) [url]
- STRATEGIA E SISTEMI DI PIANIFICAZIONE (THEORY E PRACTICE) [url]
- STRATEGIA E SISTEMI DI PIANIFICAZIONE (THEORY) (modulo di STRATEGIA E SISTEMI DI PIANIFICAZIONE (THEORY E PRACTICE)) [url]
- SUSTAINABLE AND GLOBAL SUPPLY MANAGEMENT [url]
- SUSTAINABLE MOBILITY MANAGEMENT [url]
- TRANSPORTATION ECONOMICS AND MANAGEMENT [url]

Area Tecnologico-Industriale

Conoscenza e comprensione

- conoscenza dei sistemi integrati di produzione e della gestione industriale della qualità (ING-IND/16);
- conoscenza e comprensione delle operations e dei sistemi produttivi e logistici integrati (ING-IND/17);
- conoscenza dei metodi e degli strumenti per il ciclo di vita del prodotto (ING-IND/15);
- conoscenza della strumentazione e delle misure elettroniche (ING-INF/01) e dell'automazione industriale (ING-INF/04);
- conoscenza dell'ingegneria del software e dei sistemi ICT (ING-INF/05);
- conoscenza dei sistemi energetici (ING-IND/09).

Capacità di applicare conoscenza e comprensione
- capacità di applicare le conoscenze alla progettazione di sistemi integrati di produzione e gestione della logistica;
- comprensione e gestione delle problematiche legate alla qualità dei processi industriali;
- capacità di progettazione e gestione del ciclo di vita del prodotto.

Le conoscenze e capacità sono conseguite e verificate nelle seguenti attività formative:
- Visualizza Insegnamenti
- Chiudi insegnamenti
- AUTOMAZIONE INDUSTRIALE url
- C.I. GESTIONE DELLE OPERATIONS E SISTEMI INTEGRATI DI PRODUZIONE (MODULO DI SISTEMI INTEGRATI DI PRODUZIONE + MODULO DI GESTIONE DELLE OPERATIONS) url
- C.I. GESTIONE DELLE OPERATIONS E SUPPLY AND SERVICE CHAIN MANAGEMENT (MODULO DI GESTIONE DELLE OPERATIONS E MODULO DI SUPPLY AND SERVICE CHAIN MANAGEMENT) url
- ENERGIA E SVILUPPO SOSTENIBILE url
- ENERGIA E SVILUPPO SOSTENIBILE url
- GESTIONE DEI SISTEMI ICT url
- GESTIONE DEI SISTEMI ICT url
- GESTIONE INDUSTRIALE DELLA QUALITÀ II url
- GESTIONE INDUSTRIALE DELLA QUALITÀ II url
- INDUSTRIAL ASSET MANAGEMENT url
- INTEGRATED PRODUCTION SYSTEMS url
- LEAN MANUFACTURING url
- METODI E STRUMENTI PER IL CICLO DI VITA DEL PRODOTTO url
- METODI E STRUMENTI PER IL CICLO DI VITA DEL PRODOTTO url
- MODULO DI GESTIONE DELLE OPERATIONS (modulo di C.I. GESTIONE DELLE OPERATIONS E SUPPLY AND SERVICE CHAIN MANAGEMENT (MODULO DI GESTIONE DELLE OPERATIONS E MODULO DI SUPPLY AND SERVICE CHAIN MANAGEMENT)) url
- MODULO DI GESTIONE DELLE OPERATIONS (modulo di C.I. GESTIONE DELLE OPERATIONS E SISTEMI INTEGRATI DI PRODUZIONE (MODULO DI SISTEMI INTEGRATI DI PRODUZIONE + MODULO DI GESTIONE DELLE OPERATIONS)) url
- MODULO DI SISTEMI INTEGRATI DI PRODUZIONE (modulo di C.I. GESTIONE DELLE OPERATIONS E SISTEMI INTEGRATI DI PRODUZIONE (MODULO DI SISTEMI INTEGRATI DI PRODUZIONE + MODULO DI GESTIONE DELLE OPERATIONS)) url
- PROGETTAZIONE DEI SISTEMI PRODUTTIVI url
- SERVICE ENGINEERING, OPERATIONS AND MANAGEMENT url
- SISTEMI INTEGRATI DI PRODUZIONE url
- SISTEMI LOGISTICI INTEGRATI url
- STUDI DI FABBRICAZIONE url
- SUPPLY CHAIN MANAGEMENT AND LOGISTICS NETWORK DESIGN url
- SUPPLY CHAIN MANAGEMENT AND LOGISTICS NETWORK DESIGN (modulo di C.I. GESTIONE DELLE OPERATIONS E SUPPLY AND SERVICE CHAIN MANAGEMENT (MODULO DI GESTIONE DELLE OPERATIONS E MODULO DI SUPPLY AND SERVICE CHAIN MANAGEMENT)) url

Area delle competenze complementari

Conoscenza e comprensione

- conoscenza dei modelli e algoritmi di ottimizzazione e del calcolo numerico (MAT/08, MAT/09);
- conoscenza avanzata della statistica e della statistica industriale (SECS-S/01, SECS-S/02);

Capacità di applicare conoscenza e comprensione

- capacità di comprendere e utilizzare le conoscenze ingegneristiche, matematiche e statistiche per l’analisi e la
soluzione di problemi gestionali complessi.

Le conoscenze e capacità sono conseguite e verificate nelle seguenti attività formative:

- Visualizza Insegnamenti
- Chiudi Insegnamenti

CALCOLO NUMERICOCALCOLO NUMERICO url

MODELLI E ALGORITMI DI OTTIMIZZAZIONE (modulo di MODELLI E ALGORITMI DI OTTIMIZZAZIONE) url

MODELLI E ALGORITMI DI OTTIMIZZAZIONE (modulo di MODELLI E ALGORITMI DI OTTIMIZZAZIONE) url

STATISTICS FOR DIGITAL AND ORGANISATIONAL INNOVATION url

STATISTICS FOR DIGITAL AND ORGANISATIONAL INNOVATION url

<table>
<thead>
<tr>
<th>QUADRO A4.c</th>
<th>Autonomia di giudizio</th>
<th>Abilità comunicative</th>
<th>Capacità di apprendimento</th>
</tr>
</thead>
</table>

Autonomia di giudizio

Il corso di laurea magistrale contribuisce allo sviluppo dell'autonomia di giudizio - intesa come la capacità di valutare e apprezzare, anche attraverso gli opportuni strumenti metodologici e concettuali, la pluralità degli approcci, delle idee e delle soluzioni per pervenire criticamente ad un giudizio di validità, opportunità o convenienza delle stesse, al fine di operare scelta manageriali coerenti e robuste negli ambiti di interesse, quali:

- i processi aziendali
- l'interpretazione di dati quantitativi sulle attività produttive ed economiche
- la comprensione delle dinamiche organizzative interne alle imprese e alle pubbliche amministrazioni
- la valutazione economica, strategica e organizzativa delle decisioni aziendali.

Lo sviluppo dell'autonomia di giudizio è promosso attraverso l'applicazione autonoma da parte dello studente dei concetti, metodi e approcci teorici e metodologici illustrati nei diversi insegnamenti a casi di studio e problemi tipici dei contesti di riferimento.

Abilità comunicative

Il laureato magistrale in Ingegneria Gestionale deve saper comunicare in modo efficace, rigoroso e con proprietà di linguaggio nel rapporto con tecnici ed esperti afferenti alle diverse aree aziendali e in ambito internazionale. La conoscenza della lingua inglese è prerequisito indispensabile per il conseguimento della laurea per cui il laureato deve essere in grado di comunicare anche in inglese su problematiche di carattere tecnico.

A tale scopo i laureati hanno adeguate competenze e strumenti per la comunicazione personale con riferimento a:
- comunicazione in lingua italiana e inglese, scritta e orale;
- abilità informatiche, elaborazione e presentazione dati;
- capacità di lavorare in gruppo;
- trasmissione e divulgazione dell'informazione all'interno di una organizzazione.

Le prove d'esame, generalmente svolte secondo la modalità del colloquio orale, consentono di verificare le abilità comunicative maturate dall'allievo. Inoltre, nel corso di alcuni degli insegnamenti maggiormente caratterizzanti il corso di studi, sono previste delle attività seminariale svolte da gruppi di studenti su argomenti specifici di ciascun insegnamento in modo da introdurre l'abitudine alla discussione e al confronto pubblico. La prova finale di tesi costituisce un ulteriore momento di confronto e di verifica.

<table>
<thead>
<tr>
<th>Capacità di apprendimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>L'acquisizione e lo sviluppo della capacità critica di apprendimento rappresenta un obiettivo primario per il corso di laurea magistrale, stimolando lo sviluppo continuativo delle competenze in un'ottica di lifelong learning. La capacità di apprendimento costituisce elemento fondante il profilo professionale in uscita per poter affrontare la dinamicità dei sistemi complessi in cui è chiamato ad operare attraverso un continuo aggiornamento e approfondimento.</td>
</tr>
<tr>
<td>Il corso di laurea fornirà inoltre capacità complementari necessarie per lo sviluppo e l'approfondimento di ulteriori competenze, con riferimento a:</td>
</tr>
<tr>
<td>- consultazione e utilizzo di fonti bibliografiche;</td>
</tr>
<tr>
<td>- consultazione di banche dati e altre informazioni in rete;</td>
</tr>
<tr>
<td>- sviluppo di una indagine sul campo;</td>
</tr>
<tr>
<td>- raccolta di informazioni all'interno di una particolare realtà aziendale.</td>
</tr>
<tr>
<td>La capacità di apprendimento viene stimolata attraverso la promozione del lavoro personale accanto al lavoro di gruppo sia nell'ambito degli insegnamenti che nello sviluppo del lavoro di tesi per offrire allo studente la possibilità di verificare e migliorare la propria capacità.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QUADRO A.4.</th>
<th>Descrizione sintetica delle attività affini e integrative</th>
</tr>
</thead>
</table>

In ragione degli obiettivi formativi del corso di studi – orientato a formare figure professionali in grado di identificare, analizzare e risolvere i problemi propri delle moderne organizzazioni aziendali, pubbliche e private – e in virtù dell'ampia e variata palette di esperienze e competenze d'impiego proprie, si affiancano alle attività caratterizzanti del corso fornendo competenze e abilità professionali di base caratterizzante. La conoscenza di una varietà di approcci e strumenti metodologici e tecnologici consentono infatti all'ingegnere gestionale di affrontare problemi complessi e multidisciplinari nelle diverse aree dell'organizzazione.
In particolare, le attività affini e integrative nell’ambito informatico e ingegneristico forniscono competenze tecniche e scientifiche utili comprendere e gestire le interdipendenze tra scelte tecnologiche, organizzative e gestionali, e i relativi risultati economici. Inoltre, gli aspetti tecnologici relativi agli strumenti e sistemi per la raccolta ed elaborazione delle informazioni e alla strutturazione e utilizzo di banche dati per l’analisi dei dati rappresentano un valido supporto all’innovazione e miglioramento dei processi decisionali dell’impresa in ottica data-driven. Infine, le attività affini in area ingegneristica permettono di formare competenze nell’ambito della sostenibilità con riferimento all’impatto ambientale dei sistemi energetici, delle tecnologie e dei materiali, nonché dei metodi e strumenti dell’ingegneria industriale.

Le attività affini e integrative nell’ambito economico, statistiche e matematico contribuiscono al percorso formativo fornendo conoscenze e competenze nel campo dell’economia, della statistica e della matematica applicata, utili per la comprensione e interpretazione del sistema economico in cui operano le imprese, nonché per la produzione e analisi degli indicatori economico-statistici e modelli di ottimizzazione e per la valutazione degli aspetti economici, finanziari, organizzativi e tecnici di alto livello connessi alle scelte tecnologiche e gestionali. Tali competenze integrative sono funzionali alle attività di gestione dei fattori produttivi, tra i quali il fattore umano, in relazione alle problematiche e opportunità economiche, organizzative e tecnologiche, nonché alla valutazione critica, supportata da approcci logico-quantitativi, e la gestione degli aspetti tecnici, economici, organizzativi e finanziari legati alle scelte di innovazione tecnologica, di processo e strategica.

QUADRO A5.a

Caratteristiche della prova finale

17/04/2020

La prova finale consiste nella presentazione di una relazione individuale scritta, elaborata in modo originale sull’attività svolta dallo studente sotto la supervisione di un docente relatore, discussa in seduta pubblica davanti ad una commissione di docenti, che esprimerà in centodue decimali la valutazione complessiva.

Le attività relative alla preparazione della prova finale per il conseguimento della laurea saranno svolte dallo studente con modalità quali l'osservazione, la ricerca, interventi sperimentali in situazioni di laboratorio o sul campo, lo sviluppo e validazione di modelli logici e di soluzioni a specifici problemi.

E’ possibile redigere e discutere la prova finale in lingua straniera, previo accordo con il docente relatore.

QUADRO A5.b

Modalità di svolgimento della prova finale

09/04/2020

La prova finale consiste nella presentazione di una relazione scritta individuale o a due nomi, elaborata in modo originale sotto la supervisione di un docente relatore, discussa in seduta pubblica davanti ad una commissione di docenti che esprimerà in centodue decimali la valutazione complessiva. Le attività relative alla preparazione della prova finale per il
conseguimento della laurea saranno svolte dallo studente con modalità quali l'osservazione, la ricerca, interventi sperimentali in situazioni di laboratorio o sul campo. E' possibile redigere e discutere la prova finale in lingua inglese, previo accordo con il docente relatore.

In generale, il corso di laurea segue nella gestione dell'esame di laurea l'impostazione definita nel regolamento didattico della Scuola di Ingegneria e quindi comune a tutti i corsi di laurea magistrale di Ingegneria.

Ai sensi della normativa in vigore e del Regolamento Didattico di Ateneo (art.3, comma 4), il corso di studio provvede al rilascio, su richiesta degli interessati, di un certificato (diploma supplement) che riporta, anche in lingua inglese e secondo modelli conformi a quelli adottati dai Paese europei, le principali indicazioni relative al curriculum specifico seguito da ogni studente per conseguire il titolo.

Link: https://www.unibg.it/node/7363 (Prove finali / Tesi di laurea - Ingegneria)
Curriculum: Generale

<table>
<thead>
<tr>
<th>Attività caratterizzanti</th>
<th>settore</th>
<th>CFU Ins</th>
<th>CFU Off</th>
<th>CFU Rad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingegneria gestionale</td>
<td>ING-IND/16 Tecnologie e sistemi di lavorazione</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MODULO DI SISTEMI INTEGRATI DI PRODUZIONE (1 anno) - 6 CFU - semestrale - obbl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.I. GESTIONE DELLE OPERATIONS E SISTEMI INTEGRATI DI PRODUZIONE (MODULO DI SISTEMI INTEGRATI DI PRODUZIONE + MODULO DI GESTIONE DELLE OPERATIONS) (1 anno) - 6 CFU - semestrale - obbl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GESTIONE INDUSTRIALE DELLA QUALITÀ II (1 anno) - 6 CFU - semestrale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GESTIONE INDUSTRIALE DELLA QUALITÀ II (2 anno) - 6 CFU - semestrale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ING-IND/17 Impianti industriali meccanici</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.I. GESTIONE DELLE OPERATIONS E SISTEMI INTEGRATI DI PRODUZIONE (MODULO DI SISTEMI INTEGRATI DI PRODUZIONE + MODULO DI GESTIONE DELLE OPERATIONS) (1 anno) - 6 CFU - semestrale - obbl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.I. GESTIONE DELLE OPERATIONS E SUPPLY AND SERVICE CHAIN MANAGEMENT (MODULO DI GESTIONE DELLE OPERATION E MODULO DI SUPPLY AND SERVICE CHAIN MANAGEMENT) (1 anno) - 12 CFU - annuale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MODULO DI GESTIONE DELLE OPERATION (1 anno) - 6 CFU - annuale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MODULO DI GESTIONE DELLE OPERATIONS (1 anno) - 6 CFU - semestrale - obbl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUPPLY CHAIN MANAGEMENT AND LOGISTICS NETWORK DESIGN (1 anno) - 6 CFU - annuale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PROGETTAZIONE DEI SISTEMI PRODUTTIVI (2 anno) - 6 CFU - semestrale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SISTEMI LOGISTICI INTEGRATI (2 anno) - 6 CFU - semestrale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ING-IND/35 Ingegneria economico-gestionale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANALISI DEI SISTEMI FINANZIARI I (FINANZA D'IMPRESA) (1 anno) - 12 CFU - semestrale - obbl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Módulo/conteúdo</td>
<td>CFU</td>
<td>CFU Rad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GESTIONE DELL’INNOVAZIONE E DEI PROGETTI (1 anno) - 12 CFU - semestrale - obbl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPRENDITORIALITÀ, INNOVAZIONE E MARKETING (2 anno) - 6 CFU - semestrale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANAGEMENT DELLE IMPRESE MULTINAZIONALI (2 anno) - 6 CFU - semestrale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORGANIZZAZIONE E GESTIONE DELLE RISORSE UMANE (2 anno) - 6 CFU - semestrale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUBLIC MANAGEMENT (2 anno) - 6 CFU - semestrale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STARTUP AND DIGITAL TRANSFORMATION (2 anno) - 6 CFU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRATEGIA E SISTEMI DI PIANIFICAZIONE (PRACTICE) (2 anno) - 6 CFU - annuale - obbl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRATEGIA E SISTEMI DI PIANIFICAZIONE (THEORY E PRACTICE) (2 anno) - 12 CFU - annuale - obbl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRATEGIA E SISTEMI DI PIANIFICAZIONE (THEORY) (2 anno) - 6 CFU - annuale - obbl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSPORTATION ECONOMICS AND MANAGEMENT (2 anno) - 6 CFU - semestrale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ING-INF/04 Automatica</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimo di crediti riservati dall’ateneo: 54 (minimo da D.M. 45)

Totale attività caratterizzanti

<table>
<thead>
<tr>
<th>CFU</th>
<th>CFU Rad</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>54 - 82</td>
</tr>
</tbody>
</table>

Attività formative affini o integrative

<table>
<thead>
<tr>
<th>Módulo/conteúdo</th>
<th>CFU</th>
<th>CFU Rad</th>
</tr>
</thead>
<tbody>
<tr>
<td>intervallo di crediti da assegnarsi complessivamente all’attività (minimo da D.M. 12)</td>
<td>30</td>
<td>18 - 30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A11</th>
<th>ING-IND/09 - Sistemi per l’energia e l’ambiente</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ENERGIA E SVILUPPO SOSTENIBILE (1 anno) - 6 CFU - semestrale</td>
</tr>
<tr>
<td></td>
<td>ENERGIA E SVILUPPO SOSTENIBILE (2 anno) - 6 CFU - semestrale</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A11</th>
<th>ING-IND/15 - Disegno e metodi dell’ingegneria industriale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>METODI E STRUMENTI PER IL CICLO DI VITA DEL PRODOTTO (1 anno) - 6 CFU - semestrale</td>
</tr>
<tr>
<td></td>
<td>METODI E STRUMENTI PER IL CICLO DI VITA DEL PRODOTTO (2 anno) - 6 CFU - semestrale</td>
</tr>
<tr>
<td>Corso</td>
<td>Descrizione</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>ING-IND/16</td>
<td>Tecnologie e sistemi di lavorazione</td>
</tr>
<tr>
<td>STUDI DI FABBRIACIONE (2 anno)</td>
<td>6 CFU</td>
</tr>
<tr>
<td>ING-INF/01</td>
<td>Elettronica</td>
</tr>
<tr>
<td>ING-INF/05</td>
<td>Sistemi di elaborazione delle informazioni</td>
</tr>
<tr>
<td>GESTIONE DEI SISTEMI ICT (1 anno)</td>
<td>6 CFU</td>
</tr>
<tr>
<td>INTELLIGENZA ARTIFICIALE (1 anno)</td>
<td>6 CFU</td>
</tr>
<tr>
<td>GESTIONE DEI SISTEMI ICT (2 anno)</td>
<td>6 CFU</td>
</tr>
<tr>
<td>INTELLIGENZA ARTIFICIALE (2 anno)</td>
<td>6 CFU</td>
</tr>
<tr>
<td>ING-INF/04</td>
<td>Automatica</td>
</tr>
<tr>
<td>MAT/09</td>
<td>Ricerca operativa</td>
</tr>
<tr>
<td>MODELLI E ALGORITMI DI OTTIMIZZAZIONE (1 anno)</td>
<td>6 CFU</td>
</tr>
<tr>
<td>MODELLI E ALGORITMI DI OTTIMIZZAZIONE (2 anno)</td>
<td>6 CFU</td>
</tr>
<tr>
<td>SECS-P/01</td>
<td>Economia politica</td>
</tr>
<tr>
<td>ECONOMIA INDUSTRIALE (MODULO DI ECONOMIA INDUSTRIALE + MODULO DI MICROECONOMIA AVANZATA) (1 anno)</td>
<td>6 CFU</td>
</tr>
<tr>
<td>MODULO DI MICROECONOMIA AVANZATA (1 anno)</td>
<td>6 CFU</td>
</tr>
<tr>
<td>ECONOMIA SANITARIA (2 anno)</td>
<td>6 CFU</td>
</tr>
<tr>
<td>HEALTH ECONOMICS AND POLICY (2 anno)</td>
<td>6 CFU</td>
</tr>
<tr>
<td>SECS-P/06</td>
<td>Economia applicata</td>
</tr>
<tr>
<td>ECONOMIA INDUSTRIALE (MODULO DI ECONOMIA INDUSTRIALE + MODULO DI MICROECONOMIA AVANZATA) (1 anno)</td>
<td>6 CFU</td>
</tr>
<tr>
<td>MODULO DI ECONOMIA INDUSTRIALE (1 anno)</td>
<td>6 CFU</td>
</tr>
<tr>
<td>ECONOMIA DELLE RETI E DEI SERVIZI (2 anno)</td>
<td>6 CFU</td>
</tr>
<tr>
<td>SECS-S/01</td>
<td>Statistica</td>
</tr>
<tr>
<td>SECS-S/02</td>
<td>Statistica per la ricerca sperimentale e tecnologica</td>
</tr>
</tbody>
</table>
STATISTICA II (MODELLI DINAMICI E PREV.STATISTICA) (1 anno) - 6 CFU - semestrale

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STATISTICS FOR DIGITAL AND ORGANISATIONAL INNOVATION (1 anno) - 6 CFU - semestrale</td>
<td></td>
</tr>
<tr>
<td>Totale attività Affini</td>
<td>30</td>
</tr>
<tr>
<td>18 - 30</td>
<td></td>
</tr>
</tbody>
</table>

Altre attività

<table>
<thead>
<tr>
<th>Altre attività</th>
<th>CFU</th>
<th>CFU Rad</th>
</tr>
</thead>
<tbody>
<tr>
<td>A scelta dello studente</td>
<td>12</td>
<td>8 - 12</td>
</tr>
<tr>
<td>Per la prova finale</td>
<td>11</td>
<td>11 - 11</td>
</tr>
<tr>
<td>Ulteriori attività formative (art. 10, comma 5, lettera d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulteriori conoscenze linguistiche</td>
<td>-</td>
<td>0 - 6</td>
</tr>
<tr>
<td>Abilità informatiche e telematiche</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tirocini formativi e di orientamento</td>
<td>-</td>
<td>0 - 6</td>
</tr>
<tr>
<td>Altre conoscenze utili per l’inserimento nel mondo del lavoro</td>
<td>1</td>
<td>0 - 6</td>
</tr>
<tr>
<td>Minimo di crediti riservati dall’ateneo alle Attività art. 10, comma 5 lett. d</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Per stages e tirocini presso imprese, enti pubblici o privati, ordini professionali</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Totale Altre Attività</td>
<td>24</td>
<td>20 - 41</td>
</tr>
</tbody>
</table>

CFU totali per il conseguimento del titolo: 120

CFU totali inseriti nel curriculum Generale: 120 (92 - 153)
<table>
<thead>
<tr>
<th>ESAME</th>
<th>Modulo</th>
<th>Insegnamento</th>
<th>SSD</th>
<th>Sem.</th>
<th>CFU</th>
<th>codice</th>
<th>docente</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2a</td>
<td>Analisi dei sistemi finanziari I (Finanza d’impresa)</td>
<td>ING-IND/35</td>
<td>1</td>
<td>12</td>
<td>37002</td>
<td>Stefano Paleari</td>
</tr>
<tr>
<td>1</td>
<td>2b.1</td>
<td>Sistemi integrati di produzione</td>
<td>ING-IND/16</td>
<td>1</td>
<td>6</td>
<td>37041</td>
<td>Giancarlo Maccarini</td>
</tr>
<tr>
<td>1</td>
<td>2b.2</td>
<td>Supply Chain Management and Logistics Network Design</td>
<td>ING-IND/17</td>
<td>2</td>
<td>6</td>
<td>37042-eng</td>
<td>Roberto Pinto</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>Statistica II (Modelli dinamici e prev. Statistica)</td>
<td>SECS-S/02</td>
<td>1</td>
<td>6</td>
<td>37070</td>
<td>Alessandro Fassò</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>Gestione dell’Innovazione e dei Progetti</td>
<td>MAT/09</td>
<td>1</td>
<td>6</td>
<td>37209</td>
<td>Maria Teresa Vespucci</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Microeconomia avanzata</td>
<td>SECS-P/01</td>
<td>2</td>
<td>6</td>
<td>37162</td>
<td>Matteo Kalchschmidt</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>Metodi e strumenti per il ciclo di vita del prodotto</td>
<td>ING-IND/15</td>
<td>2</td>
<td>6</td>
<td>37008</td>
<td>Caterina Rizzi</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>Strategia e sistemi di pianificazione (modulo Theory)</td>
<td>ING-IND/35</td>
<td>1</td>
<td>6</td>
<td>37161</td>
<td>Giuliano Masiero</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>Economia industriale</td>
<td>SECS-P/01</td>
<td>2</td>
<td>6</td>
<td>37035</td>
<td>Davide Scotti</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>Strategia e sistemi di pianificazione (modulo Practice)</td>
<td>ING-IND/35</td>
<td>2</td>
<td>6</td>
<td>37024</td>
<td>Giovanni Campopiano</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>Management delle imprese multinazionali</td>
<td>ING-IND/35</td>
<td>1</td>
<td>6</td>
<td>37029</td>
<td>Mara Bramana</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>Progettazione dei sistemi produttivi</td>
<td>ING-IND/17</td>
<td>1</td>
<td>6</td>
<td>37171</td>
<td>Tommaso Minola</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>Gestione dei sistemi ICT</td>
<td>ING-IND/09</td>
<td>1</td>
<td>6</td>
<td>3793</td>
<td>Giovanna Barigozzi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESAME</th>
<th>Modulo</th>
<th>Insegnamento</th>
<th>SSD</th>
<th>Sem.</th>
<th>CFU</th>
<th>codice</th>
<th>docente</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2a</td>
<td>Analisi dei sistemi finanziari I (Finanza d’impresa)</td>
<td>ING-IND/35</td>
<td>1</td>
<td>12</td>
<td>37002</td>
<td>Stefano Paleari</td>
</tr>
<tr>
<td>2</td>
<td>2b.1</td>
<td>Sistemi integrati di produzione</td>
<td>ING-IND/16</td>
<td>1</td>
<td>6</td>
<td>37041</td>
<td>Giancarlo Maccarini</td>
</tr>
<tr>
<td>2</td>
<td>2b.2</td>
<td>Supply Chain Management and Logistics Network Design</td>
<td>ING-IND/17</td>
<td>2</td>
<td>6</td>
<td>37042-eng</td>
<td>Roberto Pinto</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Statistica II (Modelli dinamici e prev. Statistica)</td>
<td>SECS-S/02</td>
<td>1</td>
<td>6</td>
<td>37070</td>
<td>Alessandro Fassò</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Gestione dell’Innovazione e dei Progetti</td>
<td>MAT/09</td>
<td>1</td>
<td>6</td>
<td>37209</td>
<td>Maria Teresa Vespucci</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>Microeconomia avanzata</td>
<td>SECS-P/01</td>
<td>2</td>
<td>6</td>
<td>37162</td>
<td>Matteo Kalchschmidt</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>Metodi e strumenti per il ciclo di vita del prodotto</td>
<td>ING-IND/15</td>
<td>2</td>
<td>6</td>
<td>37008</td>
<td>Caterina Rizzi</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>Strategia e sistemi di pianificazione (modulo Theory)</td>
<td>ING-IND/35</td>
<td>1</td>
<td>6</td>
<td>37161</td>
<td>Giuliano Masiero</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>Economia industriale</td>
<td>SECS-P/01</td>
<td>2</td>
<td>6</td>
<td>37035</td>
<td>Davide Scotti</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>Strategia e sistemi di pianificazione (modulo Practice)</td>
<td>ING-IND/35</td>
<td>2</td>
<td>6</td>
<td>37024</td>
<td>Giovanni Campopiano</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>Management delle imprese multinazionali</td>
<td>ING-IND/35</td>
<td>1</td>
<td>6</td>
<td>37029</td>
<td>Mara Bramana</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>Progettazione dei sistemi produttivi</td>
<td>ING-IND/17</td>
<td>1</td>
<td>6</td>
<td>37171</td>
<td>Tommaso Minola</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>Gestione dei sistemi ICT</td>
<td>ING-IND/09</td>
<td>1</td>
<td>6</td>
<td>3793</td>
<td>Giovanna Barigozzi</td>
</tr>
</tbody>
</table>

Tabella A - Insegnamenti a scelta

<table>
<thead>
<tr>
<th>CS</th>
<th>INSEGNAMENTO</th>
<th>SSD</th>
<th>Sem.</th>
<th>CFU</th>
<th>CODICE</th>
<th>DOCENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH Meccanica</td>
<td>Calcolo numerico</td>
<td>MAT/08</td>
<td>1</td>
<td>6</td>
<td>39064</td>
<td>Francesca Maggioni</td>
</tr>
<tr>
<td>LH Gestionale</td>
<td>Economia delle reti e dei servizi</td>
<td>SECS-P/06</td>
<td>1</td>
<td>6</td>
<td>37035</td>
<td>Davide Scotti</td>
</tr>
<tr>
<td>LH Informatica</td>
<td>Gestione dei sistemi ICT</td>
<td>ING-INF/05</td>
<td>2</td>
<td>6</td>
<td>37034</td>
<td>da definire</td>
</tr>
<tr>
<td>LH Meccanica</td>
<td>Economia industriale</td>
<td>SECS-P/01</td>
<td>1</td>
<td>6</td>
<td>37034</td>
<td>Giuliano Masiero</td>
</tr>
<tr>
<td>LH Gestionale</td>
<td>Management delle imprese multinazionali</td>
<td>ING-IND/35</td>
<td>1</td>
<td>6</td>
<td>37029</td>
<td>Mara Bramana</td>
</tr>
<tr>
<td>LH Gestionale</td>
<td>Imprenditorialità, innovazione e marketing</td>
<td>ING-IND/35</td>
<td>2</td>
<td>6</td>
<td>37171</td>
<td>Tommaso Minola</td>
</tr>
<tr>
<td>LH Meccanica</td>
<td>Metodi e strumenti per il ciclo di vita del prodotto</td>
<td>ING-IND/15</td>
<td>2</td>
<td>6</td>
<td>37008</td>
<td>Caterina Rizzi</td>
</tr>
<tr>
<td>LH Gestionale</td>
<td>Modelli e algoritmi di ottimizzazione</td>
<td>MAT/09</td>
<td>1</td>
<td>6</td>
<td>37209</td>
<td>Maria Teresa Vespucci</td>
</tr>
<tr>
<td>LH Gestionale</td>
<td>Organizzazione e gestione delle risorse umane</td>
<td>ING-IND/35</td>
<td>1</td>
<td>6</td>
<td>37032</td>
<td>da definire</td>
</tr>
<tr>
<td>LH Informatica</td>
<td>Reati di telecomunicazione</td>
<td>ING-INF/03</td>
<td>2</td>
<td>6</td>
<td>21039</td>
<td>Fabio Martignon</td>
</tr>
<tr>
<td>LH Gestionale</td>
<td>Energia e sviluppo sostenibile</td>
<td>ING-IND/09</td>
<td>1</td>
<td>6</td>
<td>3793</td>
<td>Giovanna Barigozzi</td>
</tr>
<tr>
<td>LH Gestionale</td>
<td>Sistemi integrati di produzione</td>
<td>ING-IND/16</td>
<td>1</td>
<td>6</td>
<td>37043</td>
<td>Giancarlo Maccarini</td>
</tr>
<tr>
<td>LM Gestionale</td>
<td>Sistemi logistici integrati</td>
<td>ING-IND/17</td>
<td>1</td>
<td>6</td>
<td>37025</td>
<td>Roberto Pinto</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------</td>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>LM Gestionale</td>
<td>Statistica II (Modeli dinamici e prev. Statistica)</td>
<td>SECS-S/02</td>
<td>1</td>
<td>6</td>
<td>37010</td>
<td>Alessandro Fassò</td>
</tr>
<tr>
<td>LM Gestionale</td>
<td>Studi di fabbricazione</td>
<td>ING-IND/16</td>
<td>2</td>
<td>6</td>
<td>37023</td>
<td>Chiara Ravasio</td>
</tr>
<tr>
<td>L Informatica</td>
<td>Automazione industriale</td>
<td>ING-INF/04</td>
<td>1</td>
<td>6</td>
<td>21052-1</td>
<td>da definire</td>
</tr>
<tr>
<td>LM Management Engineering</td>
<td>Insegnamenti a scelta Corso di Management Engineering (in inglese)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabella B - Attività speciali

<table>
<thead>
<tr>
<th>Summer schools</th>
<th>CFU</th>
<th>Docente referente</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer School: Global Perspectives Of Public And Private Sector Interaction – Joint Summer School With Indiana University And University Of Ausburg</td>
<td>6</td>
<td>Prof. Silvio Vismara</td>
<td>37180-ENG</td>
</tr>
<tr>
<td>Summer School: Summer School On Applied Health Econometrics And Health Policy, In Collaborazione Con Crisp E Università Degli Studi Di Milano Bicocca</td>
<td>6</td>
<td>Prof. Giuliano Masiero</td>
<td>37181-ENG</td>
</tr>
<tr>
<td>Summer School: Green Energy Management organizzata in collaborazione con le Università Milano-Bicocca, Politecnico di Milano, Roma-La Sapienza, Chieti-Pescara, Universidad de Santiago de Compostela (Spain) e University of Aveiro (Portugal)</td>
<td>6</td>
<td>Prof. Maria Teresa Vespucci</td>
<td>37183-ENG</td>
</tr>
<tr>
<td>Programma HC.LAB: innovazione e imprenditorialità nell’healthcare</td>
<td>6</td>
<td>Prof. Tommaso Minola</td>
<td>37190</td>
</tr>
<tr>
<td>Summer School at the University of Southern Denmark (subjects to be defined)</td>
<td>6</td>
<td>Prof. Roberto Pinto</td>
<td>37191-ENG</td>
</tr>
</tbody>
</table>

Alcune iniziative nella tabella B potrebbero richiedere un processo di selezione o subire modifiche. E' possibile selezionare una sola di queste iniziative (max 6 cfu)