MACHINE LEARNING FOR ECONOMICS | Università degli studi di Bergamo

MACHINE LEARNING FOR ECONOMICS

Modulo Generico
Codice dell'attività formativa: 
149009-E2

Scheda dell'insegnamento

Per studenti immatricolati al 1° anno a.a.: 
2020/2021
Insegnamento (nome in italiano): 
MACHINE LEARNING FOR ECONOMICS
Insegnamento (nome in inglese): 
MACHINE LEARNING FOR ECONOMICS
Tipo di attività formativa: 
Attività formativa Caratterizzante
Tipo di insegnamento: 
Obbligatoria
Settore disciplinare: 
STATISTICA (SECS-S/01)
Anno di corso: 
1
Anno accademico di offerta: 
2020/2021
Crediti: 
6
Responsabile della didattica: 
Mutuazioni

Altre informazioni sull'insegnamento

Ciclo: 
Annualità Singola
Obbligo di frequenza: 
No
Ore di attività frontale: 
48
Ore di studio individuale: 
102
Ambito: 
Statistico-matematico
Prerequisites

- Good knowledge of the fundamentals of Statistics (i.e. probability, inferential statistics, linear regression model).
- Basic knowledge of the R programming language.

Educational goals

The course aims at providing the knowledge of cutting-edge statistical tools for modeling complex data. In particular, the objective of the considered methods is the automatic detection of patterns in the data (i.e. to “learn” from data). The estimated models can then be used by the analysts to make accurate predictions and take decisions under uncertainty.

At the end of the course the student will gain the ability to:

a) choose and apply the appropriate statistical tool, in the class of statistical learning methods, for the analysis of different types of data coming from real-world problems;

b) use the open-source statistical software R (freely available for download at http://www.r-project.org) for performing data analysis and visualization, implementing statistical models and obtaining predictions;

c) interpret the results in a decision making perspective.

Course content

- Introduction to machine learning: supervised versus unsupervised learning, the bias-variance trade-off.
- Classification methods: K-nearest neighbors classification, logistic regression, linear and quadratic discriminant analysis, classification trees (including bagging, random forests, boosting), support vector machine.
- Regression methods: K-nearest neighbors regression, ridge and lasso regression, non-linear regression models, regression trees.
- Resampling methods: cross-validation and bootstrap.

- Unsupervised learning: principal components analysis and clustering.

Teaching methods

The course consists in theory lectures and R lab sessions (usually R labs represent 1/3 of the total number of hours). The lectures/labs calendar will be published at the beginning of the course on the Moodle page of the course.

Assessment and Evaluation

The exam consists in:

- a test including open-ended and T/F questions concerning theoretical topics or short applications of the studied methods; 

- exercises to be solved using the R software in order to evaluate the ability of the student in analysing data and interpreting outputs. 


The two parts of the exam (theoretical and practical) are each worth 50% of the total score, approximately.
This course represents the second module of the “CODING AND MACHINE LEARNING” course (12 cfu). The final score will be computed by averaging the grades obtained from the two modules (Coding for Data Science and Machine Learning for Economics).

Further information

- Attending lectures and R labs is strongly recommended.
- If the course will be delivered remotely (totally or partially), changes may occur in the program and/or in the exam, in order to adapt the course to on-line teaching methods.
- More information about the book is available at the following links:

https://www.springer.com/us/book/9781461471370
https://www-bcf.usc.edu/~gareth/ISL/
- Documentation for R software is freely available at the following link: https://www.r-project.org/other-docs.html